翻訳と辞書 |
Chevalley–Iwahori–Nagata theorem : ウィキペディア英語版 | Chevalley–Iwahori–Nagata theorem In mathematics, the Chevalley–Iwahori–Nagata theorem states that if a linear algebraic group ''G'' is acting linearly on a finite-dimensional vector space ''V'', then the map from ''V''/''G'' to the spectrum of the ring of invariant polynomials is an isomorphism if this ring is finitely generated and all orbits of ''G'' on ''V'' are closed . It is named after Claude Chevalley, Nagayoshi Iwahori, and Masayoshi Nagata. ==References==
* *
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Chevalley–Iwahori–Nagata theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|